Defining the Role of Oxygen Tension in Human Neural Progenitor Fate
نویسندگان
چکیده
Hypoxia augments human embryonic stem cell (hESC) self-renewal via hypoxia-inducible factor 2α-activated OCT4 transcription. Hypoxia also increases the efficiency of reprogramming differentiated cells to a pluripotent-like state. Combined, these findings suggest that low O2 tension would impair the purposeful differentiation of pluripotent stem cells. Here, we show that low O2 tension and hypoxia-inducible factor (HIF) activity instead promote appropriate hESC differentiation. Through gain- and loss-of-function studies, we implicate O2 tension as a modifier of a key cell fate decision, namely whether neural progenitors differentiate toward neurons or glia. Furthermore, our data show that even transient changes in O2 concentration can affect cell fate through HIF by regulating the activity of MYC, a regulator of LIN28/let-7 that is critical for fate decisions in the neural lineage. We also identify key small molecules that can take advantage of this pathway to quickly and efficiently promote the development of mature cell types.
منابع مشابه
A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملCurcumin attenuates harmful effects of arsenic on neural stem/progenitor cells
Objective: Arsenic, an environmental pollutant, decreases neuronal migration as well as cellular maturation and inhibits the proliferation of neural progenitor cells. Curcumin has been described as an antioxidant and neuroprotective agent with strong therapeutic potential in some neurological disorders. Human adipose-derived stem cells (hADSCs), a source of multipotent stem cells, can self-rene...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملFingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors
Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...
متن کاملLow oxygen tension enhances the generation of lung progenitor cells from mouse embryonic and induced pluripotent stem cells
Whole-organ decellularization technology has emerged as a new alternative for the fabrication of bioartificial lungs. Embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) are potentially useful for recellularization since they can be directed to express phenotypic marker genes of lung epithelial cells. Normal pulmonary development takes place in a low oxygen environment ranging ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2014